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Order-Independent Method of Characteristics 
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A method of characteristics is developed for any system of partial differential 
equations of any finite order that admits an isovector field V and an initial data 
map satisfying a specific transversality condition. It is shown to agree with the 
classical method of characteristics for a nonlinear, first-order PDE and for 
quasilinear systems of first-order PDE with the same principal part. The method 
is also applicable to systems of nonlinear, first-order PDE and to systems of 
higher order, where it agrees with results obtained by similarity and group 
invariant methods. Implementation of the characteristic method is easier than 
classical group invariant methods because a complete, independent system of 
invariants of the flow generated by the isovector (group symmetry) does not 
have to be computed. General solutions are obtained only when V is a Cauchy 
characteristic vector of the fundamental ideal; otherwise, any characteristic 
solution is shown to satisfy an explicit system of differential constraints. Explicit 
examples and comparisons with more classical methods are given. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

Symmetry  methods  for part ial  differential  equat ions  (PDE)  have been  

a round  since the t ime of  S. Lie, while the classical me thod  o f  characteris t ics  

for  a f irst-order P D E  has been  in use a good  deal  longer.  Recent  work  f rom 

the s tandpoin t  o f  i sovector  fields o f  differential  ideals has shown that  these 

two methods  are actual ly  two facets o f  the same geomet r ic  construct ,  and 

that  a general  me thod  of  characterist ics exists for second-order  and systems 

of  non l inea r  first-order PDE.  The purposes  o f  this paper  are to give expl ici t  

der ivat ions ,  examples ,  and proofs  o f  the results that  under l ie  this order-  

i ndependen t  me thod  of  characterist ics.  

Let Mn be the n -d imens iona l  man i fo ld  o f  i ndependen t  variables,  and 
let {xill -< i-< n} be a local coord ina te  cover. In practice,  n will be 4 or less, 

and I will usual ly  write {x, y, z, t} or a subset o f  these in order  to s implify 
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the examples. The volume element (basis n-form) of M, will be denoted 
by /z. For n =4,  we have /z = dxA dy ^ d z ^  dt. The conjugate basis for 
( n -  1)-forms is given by {/xi =0~J /z ] l -< i -  < n} with the properties (Edelen, 
1985, Section 3.5) 

= J dx j A Izi 6 ~ tz, dlz~ = 0 

The N-dimensional range space for the dependent variables will be 
denoted by EN, and I will use a local system of coordinates {q~[1 <- a _< N}. 
The (n + N)-dimensional  space G = Mn x EN will be referred to as graph 
space for obvious reasons. It is where we plot the graphs of the dependent 
variables as functions of the independent variables for a given evaluation 
q~ = q~(x~). Such an evaluation is most easily envisioned as a mapping 
from M, to G of the form 

cb: M, , -~G l x ' = x  ~, q ~ = r  i) (1.1) 

The study of PDE requires place holders for the various partial deriva- 
tives of the dependent variables. These are provided by introducing a contact 
manifold K = G x ~m with local coordinates {x i, q~, yT, y ~ , . . .  } and contact 

1 -forms 

C a = dq~ _yO~ dx k (1.2) 

C7 = dy7 - y , ~  dx k (1.3) 

o~ o t  o t  

CO = dY o -- Y ijk dxlr . . .  (1.4) 

If a map qb: Mn ~ K annihilates each of the contact 1-forms, then the y's 
become the derivatives of the dependent variables with respect to the 
independent variables (Edelen, 1985, Chapter 6). The PDE under study 
can then be written as a collection of elements {Hall  -< a -< r} of A(K).  For 
example, with n =2,  N = 1, the PDE ~b 0x~b-OtOtdp =0  could be written as 
H ~= qYx-Y, ,  if we use second-order contact forms, or by H ~= q dq ^ 
dt + dy, A dx if only first-order contact forms are used. 

This information can be organized in a more efficient manner by using 
the fact that A(K) is a graded algebra and thus has well-defined ideals. 
The fundamenta l  ideal 5~ of a given system of PDE is the closed differential 
ideal generated by the contact 1-forms and the H ' s ,  

..~ = I { C  ~, dC  ~, CT,  d C T , . . . ,  H a, d H  ~} (1.5) 

The collection of all solution maps of the given system of PDE is given by 

S = { q b : M n o K  I ~ * / ~ r  qb*5~=0} (1.6) 
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The requirement qb*~ ~ 0 guarantees that the range of qb in K projects onto 
the base manifold Mn as an n-dimensional region; that is, the x 's  remain 
independent  of  the range of  ~ .  On the other hand, ~ ' 5  ~ -- 0 if and only if 

�9 *C ~ =0 ,  cI)*C~ = 0 , . . . ,  (1.7) 

and 

,I,*H ~ = 0  (1.8) 

because qb*12 = 0 implies O*df l  = 0. 
The discussion of vector fields on K can be simplified if one introduces 

a system of collective coordinates by 

{2 A} = {X i, q~, yT, y ~ , . . . }  (1.9) 

where the index A ranges over the integers from 1 through m = d im(K) .  A 
vector field on K has a representation as a derivation 

O 
V = I.)A(zB)OA, O A := OZ A (1.10) 

It may also be thought of  as the field of  tangents to the orbits of  V; namely, 
tangents to the curves in K that are defined by solving the orbital equations 

dZA(s) vA(ZB(s)), zA (O)=z  A (1.11) 
ds 

The solutions of  (1.11) define a one-parameter  family of  automorphisms 
of K by 

Tv(s): K-~ K I 'z A = Z a ( s )  (1.12) 

These automorphisms move the points of K along the orbits of  V (along 
the flow generated by V). Thus, if qb is a map from Mn into K, we can 
compose Tv(s) with �9 to obtain a one-parameter  family of  maps 

dPv(s)= Tv(s)~ (1.13) 

Simply use the range of �9 as initial data for the orbital equations of  V. 
This family has the obvious property that 

�9 v(0) =c~ (1.14) 

and hence (1.13) defines an embedding of the given map qb in a one- 
parameter  family of maps. 

I f  qb is a solutio n map of the given system of PDE (i.e., qb c S), we 
would obviously like to choose the vector field V so that Cbv(S) is also a 
solution map for each value of s in some neighborhood 3 of s = 0, for we 
would then have embedded our known solution in a one-parameter  family 
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of  solutions. Vector fields with this property are referred to as isovectors of 
the fundamental  ideal 5~. They were first introduced in the seminal paper  
by Harrison and Estabrook (1971). The collection of all isovectors of  the 
fundamental  ideal 5r is denoted by TL The fundamental  theorem for 
isovectors (Edelen, 1980, 1985) shows that TI forms a Lie subalgebra of  
T(K)  over E and that 

T I = { V 6 T ( K )  [ ~v5~C5~} (1.15) 

where ~ denotes the Lie derivative. Isovectors for numerous important  
systems of  PDE are reported in the literature (Edelen, 1980, 1983, 1985; 
Harrison and Estabrook, 1971; Papachristov and Harrison, in press; 
Chowdhury,  1986; Delph, 1983). Isovectors can also be obtained from 
knowledge of the infinitesimal generators of  symmetry groups of systems 
of PDE that are computed by classical group extension methods (Blumin 
and Cole, 1974; Ovsiannikov, 1982; Ames, 1982; Ibragimov, 1985), or by 
prolongation methods in jet bundle formulations (Olver, 1986; Pommaret,  
1978). I will therefore assume that at least a one-dimensional vector subspace 
of isovectors of  the fundamental  ideal is known. 

Knowledge of a V~ TI does not provide new solutions to a given 
system of PDE unless we have at least one solution map qb with which to 
start the process (you don ' t  get something for nothing). The reader should 
also note that if qb=qbv(0) is a solution map and V~ TI, then ~v(S)  is a 
solution map only for each fixed numerical value of s in 8. Thus, changing 
the value of s in (1.13) takes us from one solution of the given system of 
PDE to a neighboring solution, but s cannot be allowed to change in the 
process of  obtaining a solution C~v(S) from a known solution ~.  

What happens when s is allowed to vary is reported in the remainder 
of  this paper. It leads to a generalized method of characteristics that is 
applicable to any system of PDE that can be characterized in terms of a 
fundamental  ideal ~ of  A(K) .  This generalized method of characteristics 
agrees with the classical method for a single, nonlinear, first-order PDE 
and for quasilinear systems of first-order PDE with the same principal part 
(see Sections 5 and 6). Here, we obtain general solutions (i.e., there are no 
additional constraints imposed by the method). The generalized method of 
characteristics also applies to systems of nonlinear, first-order PDE and to 
systems of second- and higher-order PDE. Explicit examples are given in 
Sections 5 and 6. In fact, this method of characteristics is an order-indepen- 
dent method that depends only on knowledge of an isovector of  the funda- 
mental ideal that satisfies a specific transversality condition. There is a price 
to be paid in the case of  a general fundamental  ideal, for we only obtain 
solutions that satisfy certain explicit constraints that are determined by the 
isovector field that is used. These results agree with those that can be 
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obtained by looking for group invariant (similarity) solutions, but are much 
easier to implement,  since we do not have to obtain a complete system of 
scalar invariants of the orbital equations. These matters are discussed in 
Section 8. 

The specifics of  the order-independent method of characteristics are 
as follows. The reader is referred to Sections 2, 3, and 6 for derivations and 
proofs. I will use generic coordinates {z a} = {x i, q~, y ~ , . . . }  on K for this 
discussion. Let 

V =  va(zB)O a (1.16) 

be an isovector of  the fundamental  ideal .r I introduce an ( n - 1 ) -  
dimensional parameter  space R "-~ and use Dn-t to denote a connected, 
open subset of  R n-~ with local coordinates {u~[1 _< l_< n - 1}. A map 

~: D , _ , o K  J zA=tka(u  ') (1.17) 

may be thought of as defining an initial data manifold in K that is para- 
metrized by the parameters {u~}. A system of functions {Za(u~; ~-}} can be 
defined by solving the initial value problem 

dZ a 
= vA(ZB), Za(0 )  = 4,a(u ') (1.18) 

d~" 

The map 

~:  D , - I  x R ~ K  I z A = Z A ( u l ; r  (1.19) 

is a solving map of the fundamental  ideal or if the pair ( V, ~k) satisfies the 
transversality condition 

~0"( V] p.) ~ 0 (1.20) 

and the initial data conditions 

0"5~ =0,  0*(V] 5~) = 0 (1.21) 

where ] denotes the standard inner product. Here, by (1.21) I mean that 
~* annihilates each of the generators of  ~ and also annihilates V] acting 
on each of the generators of  or 

These conditions may seem unduly complicated on first reading. The 
geometric picture is rather simple, however. I f  ( V, q~) satisfies the transver- 
sality condition (1.20), then the orbits of  the vector field V are not tangent 
to the initial data manifold defined by ~, and ~ has rank n - 1. I f  the initial 
data defined by 0 are then chosen so as to satisfy the initial data conditions 
(1.21), then we simply pull these initial data long the orbits of  V with orbital 
parameter  z in order to generate the n-dimensional region of K that is the 
characteristic solution defined by the map ~ .  
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There are also four rather drastic simplifications that obtain. First, 
isovectors of the fundamental ideal 5 ~ are usually determined by their 
projection onto graph space [i.e., they are prolongations (Edelen, 1985; 
Olver, 1986) of vector fields on graph space], 

V~ = vi(x j, q~)Oi + v"(x j, q~)O~ (1.22) 

In this case, we only have to solve the reduced orbital equations 

dX i 
= v i ( x  j, Qr x i ( 0 ) =  Oi(u ') (1.23) 

dT 

dQ'~= v'~(X j, Qr Q~(0) = 0~(u t) (1.24) 
d~" 

and the characteristic solution is then give in implicit parametric form by 

x '=  Xi(u ';  r),  q~ = Q~(ui; r) (1.25) 

Second, the components of Vo are often affine functions of their n + N 
arguments, in which case the reduced orbital equations (1.23) and (1.24) 
can be solved in closed form ! Whenever closed-form solutions of the orbital 
equations can be obtained, (1.25) will provide exact solutions of the system 
of  PDE. Otherwise, the orbital equations will have to be integrated numeri- 
cally, in which case the functions X~(ut; ,r) and Q'~(u~; ~') will only be 
approximate. Numerical integration is permitted in the generalized method 
of characteristics because we are able to compute the initial data constraints 
(reduced field equations) without having to integrate the orbital equations 
[see (1.21)]. 

Third, the initial data conditions (1.21) can be implemented whether 
or not the orbital equations can be explicitly solved ! This is in strong contrast 
to similarity methods and the method of group invariant solutions (Olver, 
1986, Chapter 3), since these methods require a complete system of primitive 
integrals of the orbital equations. The reader is referred to Section 8 for a 
discussion of the implications of this fundamental difference between the 
method of characteristics and the standard method of obtaining group 
invariant (similarity) solutions. 

Fourth, the initial data conditions (1.21) always simplify. In order to 
see this, let us note that the fundamental ideal 5~ is generated by a given 
collection {l)k I 1 --< k--  < M} of differential forms, 

5 ~ = l{~k, df~k I 1 ----- k--< M} 

The initial data conditions (1.21) are satisfied if and only if 

O*f~k =0,  ~P*(VJ f~k)=0 (1.26) 

tp*d~k = 0, ~*( VJ df~k) = 0 (1.27) 
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Since d and 0* commute,  the first of (1.26) implies the first of  (1.27) for 
each value of the index m. Further, since V is an isovector of  5~, 5~vOk = 
V] dOk + d( VJ Ok) -= 0 mod 5~, and hence the conditions (1.26) imply satis- 
faction of the second of (1.27) for each value of the index k. Accordingly, 
the initial data conditions are satisfied if and only if the pair (V, 0) satisfies 
the reduced initial data conditions 

0*Ok = 0, 0 * ( V J ~ k )  = 0  (l.28) 

for each value of the index k. This is a substantial reduction, as an elementary 
count will show. 

2. THE E X T E N S I O N  O P E R A T O R  O N  T H E  LIE M A N I F O L D  OF 

A V E C T O R  FIELD 

Classic isovector theory is concerned with situations in which the orbital 
parameter  s of  the flow associated with an isovector field is constant on a 
solution surface. In contrast, allowing s to vary over the solution manifold 
is precisely what is required in order to obtain an order-independent method 
of characteristics. We therefore need a new avenue of approach.  

The graph space of the V-orbit of  K takes the form 

L =  K x ~  (2.1) 

We refer to L as the Lie manifold of K and use a system of local coordinates 
{z A, sll -< A -< m}. The space K can be identified with the hypersurface s = 0 
in L by the canonical inclusion 

i: K ~ L  I {zA}~{zA,  O} (2.2) 

There is also the canonical projection 

~r: L-->K ] {zA, s}-->{zA, o} (2.3) 

and hence any w ~ A(K)  lifts to ~'*w 6 A(L), which is independent of  both 
s and ds. We may therefore consider any oJ ~ A(K)  as lifted to an element 
of  A(L) by allowing ~'* to act. 

If  V c  T ( K ) ,  we have the associated horizontal map 

Tv: L ~ L  [ {zA, s}-->{exp(SZ~v)(ZA),S} (2.4) 

where we have used the fact that Z a ( s ) =  exp(s~v)(Z A) is the operator  
representation of solutions of  the orbital equations of  the vector field V.. It 
is then clear that 

Tv(k)  = ~ o (Tvls=~) (2.5) 

reproduces the automorphism Tv(k)  of K. 
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Let d denote the exterior derivative operator  on A(L). Since s as well 

where 

0 
d = d + ds ^ - -  (2.6) 

Os 

d = d I s=k (2.7) 

is the restriction of d to the hypersurface s = k. Noting that 

d[ exp( sS~v )( W ) ] = exp( s~v  )( dw ) 

ds A exp(s2~v)(w) = exp(sSgv)(ds A w) 

it is easily seen that 

d [ e x p ( s ~ c P v ) ( z a ) ]  = exp(S~v)(dza + ds V] dz a) (2.8) 

Likewise, the identity 

5~,v(W)=SS~v(w)+dsA(VJw) Vw ~ A ( K )  

for any V~ T ( K )  shows that 

exp (&v) (m)  = exp(s3~v)(W + ds A ( V] o))) (2.9) 

A straightforward calculation then establishes the following basic result. 

Theorem 2.1. If  F t ~ A ( K )  and V c  T ( K ) ,  then 

(rro Tv)*a  = T* o ~-*f~ = exp(s3?v)(ft + ds A (V] f~)) (2.10) 

This theorem provides the explicit new structure that is introduced by 
lifting considerations to the Lie manifold L where s is allowed to vary. In 
particular, if (2.10) is restricted to a hypersurface s = k, we obtain the results 
of  classical isovector theory; namely 

( T * o  ~r*f~)l s=k = exp(k~v) ( l I )  (2.11) 

The quantity on the right-hand side of (2.10) that is acted on by exp ( s~v )  
is the extension of ~26A(K)  to an element of  A(L) evaluated on the 
hypersurface s = 0  (i.e., on K) .  As such, it acts as the initial data on s = 0  
for the orbital transport by V in the Lie manifold L. 

Definition. Let V6  TI and let ~ be a generic element of  A(K) .  The 
V-extension operator E ( V )  defines a map from A(K)  to A(L) by 

17,( V)Y~ = f~ + ds A ( V] f~) (2.12) 

as the z's can vary in L, we have 
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Lemma 2.1. The V-extension operator has the following properties: 

E( V)(f12~ + gf~2) = f E (  V)f~, + gE( V)f~R (2.13) 

E(V)(12~ ^ 122) -- [E (V) f l l ]  ^ [E(  V)f~2] (2.14) 

d( E( V)12) -= E( V)df l+ ds ^ ~ v ~  (2.15) 

E ( V ) ( ~ v ~ )  = ~v(  E ( V)~ ) (2.16) 

for any 12 c A(L) and any V~ T(K) ,  and we have the transport formula 

T*v ~ 7r'12 = exp(s~v)(E( V)t2) (2.17) 

for any 12c A(K).  

Proof Each of these results is obtained by direct calculation based on 
the definition of E (V)  and the standard definitions and properties of the 
exterior derivative, the inner product, and the Lie derivative. �9 

An essential feature of the V-extension operator is the relation between 
isovectors of  the fundamental ideal and isovectors of  the V-extension of 
the fundamental ideal. 

Definition. Let J=I{12k, df~k[l <-- k <-- M} be a differential ideal of 
A(K).  The V-extension E(V)~r of the ideal 5 ~ is the ideal generated by the 
V-extension of  each of  the generating forms of or 

E(V)~C=I{E(V)I)k,E(V)d12k I 1 <-k<-M} (2.18) 

The collection of all isovectors of E(V)#  is denoted by TE(V)L 

Remark. The ideal E(V)~r is not a differential ideal because E(V) 
and d do not commute in view of  (2.15); that is, E ( V ) # #  
1{E ( V)f~k, dE ( V)l~kl 1 --< k -< M}. This does not have serious consequences, 
however, as the proof  of the next theorem shows. 

Theorem 2.2. If V is an isovector of the differential ideal 5 t of  A(K),  
then V is an isovector of  the V-extension of #, 

V~ T I ~  V~ TE(V) I  (2.19) 

Proof Since d and ~ v  commute and t = I{~'~k, d~-~k} is a differential 
ideal, V is an isovector of 5 ~ if and only if ..~V12k =- 0 mod 5 ~, in which case 
we necessarily have ,Sffvd~"~ k ~0  mod 56. Equation (2.16) shows that E(V) 
and ~ v  commute, and hence 

~vE(V)12k=E(V)~v12k,  ~vE(V)  d l )k=E(V)~vd12k  (2.20) 
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Now, 5fvlqk and ~vd l~k  belong to 5 ~ because V e  TI, and hence the action 
of E(V)  carries them into elements of E(  V)or We therefore have 

~vE(V)12k=--O, ~ v E ( V )  d[lk =-- 0 mod E ( V ) ~  (2.21) 

and hence V is an isovector of E ( V ) ~ .  �9 

Let R p-1 have local coordinates {uql -< l<-p - 1} and let R p = ~p - i  x 
have local coordinates {ut; rll---l<-p-1}. These spaces will be used for 
parameter  spaces in what follows. Let ~0 be a map from an open set Dp_~ 
of  R p-~ into K that is quantified by 

{~ [ Z a = ~IA(u l) (2.22) 

Since K has been identified with the hypersurface s = 0 in L, the map q, 
has the cylindrical extension t~ as a map from Dp_l x R c ~P into L that is 
quantified by 

1 Z A = IliA(Ill), S = r (2.23) 

We therefore have 

~* dz A = {I1* dz A, ~:~ ds = dr (2.24) 

The workhorse of  characteristic theory is the following result. 

Theorem 2.3. Let V be an isovector of the fundamental  ideal ~r and 
let R p be a p-dimensional  parameter  space with local coordinates 
{ut, r [ l<- l<-p-1} .  I f  

~11 I z A =  ~]IA(ul) (2.25) 

is a map from an open subset Dp_l of  R p-~ into K whose cylindrical 
extension is such that 

~* (E(  V)5 ~) = 0 (2.26) 

then there is a neighborhood 3 of r = 0 in R for which 

XIf= 33"0 Tv ~ ~ [ z A = z A ( ~ I B ( u l ) ,  r) (2.27) 

is a map from the p-dimensional  region Dp_l x 3 of  ~P into K that satisfies 

x!**5~ = 0 (2.28) 

Proof Standard manipulations, (2.27), and Theorem 2.1 give us 

xtr*Sr = ~*o T*o r = t~* exp(smv) (E(  V)6 a) (2.29) 

Since V e  TI implies that V is an isovector of  E(  V)5~ by Theorem 2.2, and 
q~* annihilates E(V) , ,  ~ by hypothesis, it follows that ~* annihilates 
exp(s~v)(E(V)5~) .  The result then follows from (2.29). �9 
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All that now remains is to obtain explicit characterization of the 
conditions imposed by the requirements ~ * ( E (  V)5 ~) = 0. 

Lemma 2.2. The map 0* annihilates E(V)5~ with 

if and only if 

5 ~ = I{~)k, df~k[1 <-- k <- M} 

tp*f~k =0 ,  ~*(Vlf~k) = 0, l<_k<_M (2.30) 

Proof Since q~* satisfies (2.24) by construction, a direct calculation 
based on the definition of E (V) gives 

4~*E( V)w = 0%o + dr  ^ q,*( V] oJ) (2.31) 

for any ~o ~ A(K) .  Now, E(V)5~ = I{E( V)l~k, E(V)  d~k]l <-- k <- M}, and 
hence ~* will annihilate E(V)5~ if and only if it annihilates each of the 
generators of  E(V)& When (2.31) is used, this means that we must have 

0*~k  + d~- ̂  0"(  V] ~k)  = 0 (2.32) 

r dl)k + d~" ̂  r V] d~k) = 0 (2.33) 

Now, dT, du 1, du2,.. . ,  du p-1 are independent 1-forms, while the domain 
of the map 0 is the parameter  space Dp_l with local coordinates 
u 1, u 2 , . . . ,  u p-1. It thus follows that (2.32) and (2.33) can be satisfied if 
and only if 

0 * n k  = 0, ~,*( vJ  n k )  = 0 

and 

~* d ~ k  = O, ~*( VJ d~k)  = 0 

are satisfied. It is then trivial to see that satisfaction of the second set is 
implied by satisfaction of  the first set when we use the fact that V is an 
isovector of  the fundamental  ideal & �9 

I f  4' were a map of rank p -  1 and the isovector V were transverse to 
the range of  ~ in K, then q '  would have rank p for r in a neighborhood 
of ~- = 0. In this event, Theorem 2.3 shows how to construct an annihilating 
map q'  of  the ideal ~ of  rank p from an annihilating map 0 of rank p - 1. 
Under these circumstances, r may be viewed as defining an initial data 
manifold of  dimension p - 1 for the construction of  an annihilating map of 
the ideal 5~ by transport  of  these initial data along the orbits of  the isovector 
field V of & Theorem 2.3 thus provides a natural basis for a strong dimension 
reduction procedure for PDE that can be characterized by a differential ideal. 
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3. CHARACTERISTIC S O L U T I O N S  OF PDE THAT ARE 
CHARACTERIZED BY A DIFFERENTIAL IDEAL 

Partial differential equations that can be characterized by a differential 
ideal ~ of  A(K)  have been discussed in Section 1. The essential idea here 
is to concentrate on the collection of all solution maps 

S = { N M n - - , K [  ~ * ~  ~O, ep*t  =0} (3.1) 

The results established in Theorem 2.3 show us how to construct a map 
that annihilates the fundamental  ideal & We therefore need to determine 
the conditions under which a map of the form given by (2.27) will satisfy 
the further condition ~*p,  # 0. 

Theorem 3.1. Let V be an isovector of  the fundamental  ideal ,r and 
let 0 be a map from Dn-~ into K that satisfies the transversality condition 

0"( V]/~) ~ 0 (3.2) 

Then ~O is or rank n - 1, 

is of  rank n, and 

= zro Tv o (O (3.3) 

~*/z  ~ 0 (3.4) 

on D,_~ • ~ for some neighborhood 5 of z = 0. 

Proof. Since V]tz is an ( n - 1 ) - f o r m  on K and 0 has an ( n - 1 ) -  
dimensional domain Dn-l ,  satisfaction of the transversality condition (3.2) 
implies that tb is of  maximal rank n - 1. On the other hand, (3.3), (2.17), 
and (2.27) give 

A 

~*/~ = 0* exp(s~v)(/x + ds ^ ( V]/x)) (3.5) 

Noting that exp(s~v)( /z)  is an n-form, that 0 is of  rank n - 1, and 0*tz = 
~*Iz = 0, one finds that (3.5) reduces to 

�9 *1~ = tk* exp(s~v)(ds  ^ ( VJ t-~)) (3.6) 

The continuity of  the right-hand side of  (3.6) then shows that satisfaction 
of the transversality condition implies the existence of a neighborhood 3 
of r = 0  such that ~*/x ~ 0 ,  and hence �9 has rank n on Dn_lx3.  �9 

It is now simply a matter of  combining Theorem 2.3, Lemma 2.2, and 
Theorem 3.1 in order to obtain the following result. 

Theorem 3.2. Let K be an m-dimensional space with local coordinates 
{zA[1 ~ A_< m} and let 5~ = I{l~k, dl-~k[1 <~ k<_ M} be a differential ideal of  
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A(K) that characterizes a system of PDE. If V is an isovector of 5~ and ~O 
is a map from D,_I into K such that  

O*(vJ~)~o 
q'*~k = 0, 

0"( v]  ok)  = 0, 

then 

(3.7) 

l < - k < - M  (3.8) 

1 -< k -< M (3.9) 

= ~ro Tv o t~ (3.10) 

is a map from D n _ l X ~ C ~  n into K that solves the given system of PDE 
(i .e. ,  if" c S) .  

If  

V =  vA(zB)OA (3.11) 

and 

6: D , - I ~ K I z A = O A ( u  ') (3.12) 

satisfy the hypotheses of Theorem 3.2, then the solving map �9 is given by 

xl~r: D,~_aX~--)K ] zA=ZA(OB(Ul);7.  ) (3.13) 

where the Z 's  are obtained by solving the initial value problem 

dZ A 
dr = vA(z~) '  zA(o )  = 0A(u 1) (3.14) 

Equations (3.14) may be viewed as the equations for the characteristics 
associated with the pair ( V, 6) that satisfy the transversality condition (3.7). 
In like manner, the image of Dn-i in K will be referred to as the initial 
data manifold, while (3.8) and (3.9) will be referred to as the initial data 
constraints. Theorem 3.2 can thus be interpreted in the following manner. 

If V is an isovector of  the fundamental ideal 5~ and the pair (V, ~) 
satisfies the transversality condition (3.7), then the given system of PDE 
admits a characteristic solution q~ of the form (3.13) provided the initial 
data satisfy the initial data constraints (3.8) and (3.9) on the initial data 
manifold. 

A characteristic solution of a system of PDE that is generated by an 
isovector V of the fundamental ideal ..~ necessarily satisfies a system of 
additional conditions. 

Theorem 3.3. If �9 is a characteristic solution of a system of PDE 
that is generated by an isovector V of the fundamental ideal 5 ~ = 
I{~k, d~kl l  <-- k <- M}, then �9 satisfies the conditions 

~ * ( V J ~ k )  = 0, l< -k<-M (3.15) 
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throughout the domain of ~ .  Characteristic solutions of the system of PDE 
are thus restricted (as opposed to general) solutions that satisfy a specific 
set of additional conditions except in those cases where V] ~r c & 

Proof. An obvious calculation shows that 

E(V)(VJ~"~k) = VJOk  (3.16) 

and hence 

�9 *( V] Ok) = ~* exp(sAfv)( VJ Ok) (3.17) 

NOW, 2 ~ v ( V J O k ) = V J ( ~ v l I k )  because &ZvV=O, and 5fvOk----0mod~r 
because V e  TI. Hence 2Pv(VJOk)  is contained in the ideal generated by 
{Ok, VJOkI1-- < k < - M } .  Accordingly, exp(sSCv)(VJf lk )  is contained in the 
ideal generated by {Ok, V] Ok}- Satisfaction of the initial data constraints 
(3.7) and (3.8) thus implies that the right-hand side of  (3.17) necessarily 
vanishes for a characteristic solution generated by (V, ~/,), and hence (3.15) 
are satisfied. These conditions are explicit new conditions that the charac- 
teristic solution will satisfy unless VJ o~ c 5~, in which case ~'5~ = 0 will 
imply ~ * (  VJ ~r = 0. �9 

Remark.  An easy calculation shows that the pullback by a solution 
map of the higher-order contact 1-forms gives 

d d 2 
�9 *(VJ C~), ~ * ( V l C o . ) = d x ,  d x J ~ * ( V J C ~ )  (3.18) �9 * (v j  c 7 ) :  dx---7 ~ 

This shows that the only independent constraints that come from any 
collection of  contact 1-forms of  any finite order are those that come from 
the contact forms of first order; namely 

~*(  V] C ~) = 0 (3.19) 

This observation will be of  importance in correlating characteristic solutions 
with group invariant (similarity) solutions of PDE in Section 7. 

4. PROBLEMS WITH FIRST-ORDER CONTACT 1-FORMS 

Most of the remainder of this paper will be confined to situations in 
which only first-order contact forms appear in the fundamental ideal ,r 
The space K is therefore of dimension m = n + N + n N  with local coordin- 
ates {x i, q ~, y~ I 1 <- i <<- n, 1 <- a <- N} .  The ideal ~ thus has the form 

~ r  dH~ 1 l < - a < - N , l < - a < - r }  (4.1) 

where 

C ~ = dq~ _yO~ dx k (4.2) 
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and the H ' s  are elements of  A(K)  that describe the PDE under study. The 
contact ideal 

~=I{C~ ' , dC~ '  I l < _ a < - N }  (4.3) 

is clearly a subideal of  #, and the structure of  the isovectors of  cr is known 
from previous work (Edelen, 1985, Theorem 6-4.1). The following notation 
will be used: 

at = O/Ox i, 06 = O/Oq ~, O'~ = O/Oy7 

Theorem 4.1. A vector field 

V =  v~O~ + g'~O~, + v~'02 (4.4) 

is an isovector of the contact ideal if and only if 

v7 = Z,( V] C ~ ) : Z,(5 ~' - y~v k) (4.5) 

~ v C  '~ = Ot~ ( V] C~)C ~ (4.6) 

where Zi is the linear differential operator 

Z~ = O~ + y~at~ (4.7) 

and for N > 1 

while for N = 1 

in which case 

vi = f i ( x  j, q~), ~ = f ~ ( x  j, qt~) 

v i=oi (n(xJ ,  qa, y))), ~1 = (yil0~ - 1)(~7) 

(4.8) 

(4.9) 

V] C 1 = -~q(x j, ql, y)) (4.10) 

A comparison of these results with those reported by Olver (1986) 
leads to the following interrelations. An isovector V of the contact ideal is 
the first prolongation of a vector field 

Vc = v~Oi + ~ a ~  

on graph space for N >  1; that is, V=pr l (VG)  for N >  1. In fact, TI and 
p r l ( T ( G ) )  coincide when N > 1. On the other hand, for N = 1, an isovector 
of  the contact ideal is a first prolongation of  a vector field on graph space 
only when the function ~(x  J, ql, y)) that appears  in (4.9) and (4.10) is an 
affine function of the y's.  Situations with N = 1 and ~ nonlinear in the y 's  
are thus precluded if the analysis is restricted to prolongations via the 
standard jet bundle formulation! The possible drastic differences between 
isovector methods and prolongation methods in cases with N = 1 suggests 
that we look at specific cases for N = 1 for which ~ is not affine in the y's. 
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5. PROBLEMS WITH ONLY ONE DEPENDENT VARIABLE 

5.1. First-Order Equations 

I first consider a single first-order PDE 

h(x  i, U(xJ) ,  O,U(xJ)) = 0  (5.1) 

in a single unknown U(xJ) ,  so that N = 1 and n > 1. In order to simplify 
the notation, I will use local coordinates {x j, q, yil 1 <- i <- n} on K so that 
the single contact 1-form becomes 

C 1 = dq -Y i  dxi (5.2) 

The fundamental  ideal in this case is 

~r = I { C  1, dC 1, H, dH} (5.3) 

where H is the element of  A ~  that is defined by 

H = h(x  i, q, Yi) (5.4) 

Noting that 

~ v (  V] C 1) = Vj ~ v C  1 = Oq( Vj C 1) VJ C 1 (5.5) 

for any isovector of  the contact ideal, by Theorem 4.1, it follows that 

r/(x i, q, y,) = H(x ' ,  q, y,) = - VJ C '  (5.6) 

defines an isovector 

V = O'(H)O, + (y,O'-  1)(H)Oq - Z,(H)O' (5.7) 

of  the fundamental  ideal 

,.r = I{  C', dC', H, dH} = I { C ' ,  dC', -VJ C', -d (  V] C')} .  

We are therefore in position to apply Theorem 3.2 where V] t c & 
Since we are dealing with a PDE, the function H ( x  ~, q, y~) cannot be 

independent of  all of  the y's.  Hence, Oi(H) cannot vanish throughout K 
for all values of  the index i. Accordingly, 

V J I t  = ~)i ~L i = O' ( H) it, (5.8) 

is an (n - 1)-form on K that does not vanish throughout K. Let 

g,: Dn-l-> K [ xi = g'i(ul), q = tP(ul), Yi = 4'i(ul) (5.9) 

be a candidate initial data map for the PDE h =0.  The transversality 
condition (3.7) requires that the initial data be chosen so that 

tp*( vJ It) = ~b*(O'(H))g,* it, # 0 (5.10) 
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When (5.10) is satisfied, we have 0"/~; # 0 for at least one value of the index 
i. Hence 4  ̀ is of rank n -  1 and 

rank(O4`i/Ou I) = n - 1 (5.11) 

on Dn-1. Now, for the case at hand, we have VJ 5~ c ~, and hence the initial 
data conditions (3.8) and (3.9) reduce to 

4`,c,= (o4  ̀-~u t - r Ou t ] du '  = 0 (5 .12)  

4,*(v] c ' ) :  -H(6 ' ,  4 ,̀ 4`i)= o (5.13) 
Equations (5.12) may be written as a system of n - 1 affine equations 

O~ 04`' at) 
Ou I -Ou I (5.14) 

for the determination of the n functions 4`~(u~). Since the coefficient matrix 
of this system has rank n - 1 ,  the system (5.14) will always have a one- 
dimensional affine set of solutions. When these solutions are substituted 
into the remaining initial data constraint equation (5.13), a single equation 
is obtained for the determination of the required elements of the affine set 
of solutions of (5.14), and this single equation will have a solution by the 
implicit function theorem as a direct consequence of the satisfaction of the 
transversality condition. Each such solution will thus determine the n 
functions 4`i(u I) in terms of the functions 4`i(ut), 4`(ul), and their first 
derivatives. 

Satisfaction of the conditions just stated gives the initial data 
{4`i(ut), 4`(ul), 4`i(ut)l 1 - i ~ n}. Theorem 3.2 then shows that an implicitly 
defined solution of the given PDE is obtained by solving the initial value 
problem 

d X ~ 0IZl 
d7 - o Y , '  X'(0) = 4`'(u') (5.15) 

dQ y O f l  - 

= j ~ - ~ - H ,  Q(o) = 4`(u') (5.a6) 

dY~ OH y. 014 Y~(O) = 4`,(u ~) (5.17) 
d r -  OXi i o--Q" 

for the characteristics. He re /4  is defined in terms of H by H = H ( X  ~, Q, Y~). 
If the solution to this initial value problem is written in the form (notice 
that we have to solve the Y equations as well as those for the X's  and for 
Q) 

X'  = X(4`J(ul), 4`(ut), 4`,(ul); 7) (5.18) 

Q = O(4`i(u:~e), 4`(ul), 4`,(uJ); z) (5.19) 
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then the original PDE h = 0 has the implicitly defined solution 

x i=  J(i, U = (~ (5.20) 

This process is, however, exactly the standard method of characteristics 
(Duff, 1956; Courant and Hilbert, 1937) for the partial differential equation 

h(x i, U(xJ), OiU(x;)) = 0 

Theorem 3.2 is thus in agreement with the classical theory of characteristics 
for a first-order PDE with a single unknown. The reader might be worried 
about the additional term - H  on the right-hand side of (5.16). It is easily 
shown, however, that 

d/q - 0/-I 
- - ~  - n - -  
d~" oQ 

and hence the initial da ta /~(0)  = 0 implies tha t /~  will vanish on any orbit. 
Although Theorem 3.3 still holds, a characteristic solution does not 

satisfy additional constraints, because H = - V ]  C 1 (i.e., v J . r  5) .  The 
collection of all characteristic solutions of the PDE h = 0 thus contains all 
smooth solutions of this PDE for which the initial data satisfy the transver- 
sality condition. 

As an example, let us look at the problem with n = 2 with independent 
variables {x, t} and 

h(x, t, U, OxU, O,U)=OxU O t U - 4 U = O  

In this instance, we have H = YxY,-4q, and r /= H generates an isovector 
of the fundamental ideal I {C  ~, dC 1, H, dH}. This isovector gives - V ]  C 1 = 
r} = H, and hence VJ~r c & Hence, characteristic solutions generated by 
this isovector do not satisfy additional differential constraints. If we take 
the initial data map of the form 

~: [~-->K I x = u ,  t = 0 ,  q = a ( u ) ,  yx=Ox(u), y t = G ( u )  

then the transversality condition is satisfied provided a ' =  da/du  # 0, while 
the initial data conditions give the evaluations 

tp~ = a', t)t = 4o< / a' 

An integration of the orbital equations 

dX dT dQ 
dT Y" dr Yx, d'r Y): Yt + 4 Q  

d G = 4 G  ' d Y , _ 4  y ' 
dr d.r 
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with the initial data  de te rmined  by the m a p  ~0 gives us the implici t ly defined 
solut ion 

~ ( u ) ,  4, 
x=u- fa -~ - -~ t e  - 1 ) ,  t=~oe'(u)(e4"--l), U=ce(u)e  8~ 

for  any choice of  the initial da ta  U(x, 0 ) =  c~(x) with a ' ( x ) #  0. 

5.2. Second-Order Equations 

A second-order  P D E  in a single unknown  can often be represented  in 
terms of  the fundamen ta l  ideal 

J~ = I { C',  dC' ,  H 1, dH'}  (5.21) 

where  H a is a 2-form on K. The best  way to p roceed  here is with an example .  
For  simplicity,  we take n = 2 and use {x, t, q, y~, Yt} as a system o f  local 
coordinates  on K. The field equat ion  to be s tudied is character ized by the 
2-form 

H l = dal ^ doe2 (5.22) 

with 

Ol 1 = X 2 " l - ( y t )  2, Oil2= t2+ (yx) 2 (5.23) 

I f  qb: (x, t) ~ K is a solving m a p  of  the fundamen ta l  ideal with the pres- 
enta t ion 

x = x ,  t =  t, q = r  t), yx = 0 , r  y, = 0 , r  (5.24) 

then (5.22) and (5.23) give the M o n g e - A m p e r e - l i k e  nonl inear  P D E  

(x +O,r O~Otc/))(t +O~r O~O,r = Oxr 0,r OxO~r162 (5.25) 

A direct calculat ion shows that  an isovector  of  the fundamen ta l  ideal 
~r is genera ted  by 

rl  = Y x Y t  + x t  (5.26) 

in accordance  with T h e o r e m  4.1 with N = 1; 

V = ytOx + yxO, + (yxy t - -  x t  )O q - -  t Oy x - -  x Oy t (5.27) 

Let 0 be an initial da ta  m a p  f rom Da c R into K that  is quantif ied by 

x = u, t = 1, q = f ( u ) ,  y~ = ~0,(u), y, = 02(u) (5.28) 

and let f '  denote  the derivat ive of  f ( u )  with respect  to u. We then  have 
O*C 1 = ( f ' -  01) du, and hence 0 * C  1 = 0 gives 

q,, (u) = f ' ( u )  (5.29) 
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Since V] tx = y, dt - yx  dx, the transversality condition ~*( V] Ix) # 0 will be 
satisfied for all u ~ D~ for which 

f ' (u)  ~ 0 (5.30) 

Next, we note that 

V ]  C 1 = -YxY, -  xt = - r /  (5.31) 

and hence ~b*(V] C 1) = 0 gives the determination 

U 
$2(u) - (5.32) 

f ' (u)  

Since H ~ is a 2-form and 4, has rank 1, ~0*H 1 =0.  On the other hand, a 
direct calculation shows that V] H a = 0 (i.e., H 1 is an absolute invariant of  
the flow generated by V), and hence qJ*(VJHI)=-0;  the reduced field 
equation is satisfied identically. There are thus no further restrictions that 
the initial data must satisfy for this problem. In the general situation, 
VJH~#O, there would be an additional condition (the reduced field 
equation) that would involve both first and second derivatives of  the function 
f (u) ,  and this additional condition would have to be solved in order to 
determine the admissible functions f(u).  

What now remains is to solve the orbital equations 

dX_  Yt, dT_ Yx, --=dQ Yx Yt - X T  
dz dz dz 

dYe= -T,  dY,= - X  
dz dz 

subject to the initial data 

X(O) = u, T(O) = 1, Q(O) = f ( u )  

U 
Yx(O) = f ' ( u ) ,  Yt(O) 

f ' (u)  

(5.33) 

(5.34) 

Although the Y's are now explicitly included since the isovector is not a 
prolongation of a vector field on graph space, solutions of  the given system 
of PDE are derived implicitly by setting x = X ( u ;  z), t= T(u; z), (a = 
Q(u; z). We therefore have a characteristic solution 

U 
x = u cos(z) -f'--~u) sin(z), t = cos(z) +f'(u) sin(z) (5.35) 

[cos(2z) - 1] ~ b = f ( u ) - u s i n ( 2 z ) - ~  f ( u ) -  (5.36) 
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for any choice of the initial data 

4,(x, 1 ) = f ( x )  (5.37) 

such that f ' (x )  ~ 0 on the initial data line t = 1. This characteristic solution 
is single-valued for all values of z in a neighborhood ~ of z = 1 where 
O(x, t)/O(u, r)r 

Although the initial data f ( u )  can be arbitrary subject to the condition 
f ' ( u )  ~ 0, the given PDE has many other solutions that are not characteristic 
solutions. The reason for this is that VJ 5 is not contained in N, and hence 
any characteristic solution satisfies the constraint 

xlf*( VJ C 1) = 0 (5.38) 

Use of the evaluation (5.31) shows that the characteristic solution obtained 
from the isovector V necessarily satisfies the differential constraint 

OxO 0,r + xt = 0 (5.39) 

no matter how we choose the initial data function f(u).  Indeed, since we 
are solving the second-order PDE (5.25), the fact that we are only allowed 
to assign the initial data OS(x, 1 ) = f ( x )  indicates that the solution is not 
general. That this is the case is also in evidence from the fact that (5.34) 
gives the initial velocity data 

X 
Ot(b(x, 1 ) = - - -  (5.40) 

f ' (x)  

in agreement with (5.39), because Ox4)(x, 1) = f ' ( x ) .  The important thing to 
note is the relative ease with which we have been able to construct charac- 
teristic solutions to the complicated PDE (5.25). This is indicative of  the 
utility of  this order-independent method of characteristics even though it 
does not give us all solutions of  the problem. 

6. PROBLEMS WITH SEVERAL DEPENDENT VARIABLES 

The fundamental  ideal for problems with N > 1 has the generic form 

5 = I { C ~ , d C ~ , C ~ , d C ~ , . . . , H a ,  dHa]l<-a<-N,l<-i<-n,l<-a<-r} (6.1) 

Accordingly, Theorem 4.1 and the results given in Olver (1986) show that 
any isovector of  ~r is a prolongation of a vector field 

VG = vi(x j, q~)Oi + O~(x j, q~)Oa (6.2) 
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on graph space. In particular, we have 
c~ ~ i v~ = Zi(v - Y i  V ) , . . .  (6.3) 

In order to satisfy the hypotheses of Theorem 3.2, V and the initial data map 

O: D,_, ~ K [ x i 6i(u'),  q~ ~ ( u ' ) ,  yT= ~ ' = = ~ b , ( u ) , . . .  (6.4) 

must satisfy the transversality condition O*(VJ Iz)= 0; that is, 

O*( v '(x j, qt3) )O*(lx,) r 0 (6.5) 

We therefore have the following elementary result. 

Lemma 6.1. A system of PDE with N > 1 has a solution by the method 
of  characteristics only if the fundamental ideal admits an isovector V for 
which at least one of the coefficient functions v~(x j, q~) is nonzero in some 
open subset of K for at least one value of the index i. 

I will assume that the conditions of Lemma 6.1 are met since I am 
only interested in those isovectors for which the method of characteristics 
is applicable. In particular, one must exclude isovectors for internal sym- 
metries because such isovectors have v ~ = 0 for all values of the index i. 

In order to simplify the notation, put 

V i= ~b*vi(x ~, q~) = vi(OJ(u'), ~b~(u')) (6.6) 

V~ = q/*~3~ (x J, qZ) = ~3"(OJ(u~), q ~ ( u t ) ) , . . .  (6.7) 

The following result is then easily obtained from (6.5) and the column 
expansion formula for a determinant. 

Lemma 6.2. If V is an isovector of the fundamental ideal and ~O is an 
initial data map for N >  1, then 

~ * ( V j # ) = ( - 1 ) l + " d e t ( M ) d u l ^ d u 2 ^  �9 . . ^ d u  "-~ (6.8) 

where M is the n x n matrix 

M \\Oul ,  V ' ) )  (6.9) 

The transversality condition is therefore satisfied if and only if 

det(M) ~ 0 (6.10) 

is satisfied throughout the domain D,_1 of the initial data map ~b. 

Theorem 6.1. If the pair ( V, ~0) satisfy the transversality condition, then 
the initial data constraints 

~0*C" =0,  q,*(VJ C~) = 0  (6.11) 

~O*C~' = 0, $*(VJ C7) = 0 , . . .  (6.12) 
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uniquely determine the initial data ~7,  ~!~ , . . .  in terms of the initial data 
~ ,  $~, and their partial derivatives with respect to the parameters u I. 

P r o o f  An elementary calculation and (6.4) show that 

4J*C ~ =0,  ~0*(vJ c ~  = 0 

give the relations 

04 ,  ~" 0q~ o 
417, 3u I - O u "  tO~'Vm = V~ (6.13) 

This is an affine system of equations for the determination of the row matrix 
[6~,11 -< m -< n] for each value of the index a because the functions V m and 
V ~ are independent of  6~,. Noting that the coefficient matrix of  this system 
is the matrix M, which is nonsingular whenever the transversality condition 
is satisfied, we find that the system (6.13) serves to determine all of  the 
initial data functions q~7. Similarly, 

4,*c7  = o, 4,*( vJ c ~ )  = o 

give the relations 

14 ,'~ 0~97 ~b~mV m= Vi (6.14) 
~ t i m  O U  I - -  O U  I , o~ a 

Since the coefficient matrix for this affine system is also M, and the same 
is true for all initial data conditions that come from contact forms of higher 
order, the result is established. �9 

Theorem 6.2. A system of PDE with N > 1 that is characterized by a 
fundamental  ideal 5 ~ has a solution map �9 = q~ o Tv  ~ zr given by the method 
of  characteristics if and only if ~ admits an isovector V and a mapping 
~0: D,_I  ~ K that satisfy the transversality condition 

~O*(VJ/t) r 0 (6.15) 

and the reduced field equations 

@*H ~ =0,  q,*(V] H ~ ) - -  0, l < - a < - r  (6.16) 

throughout the domain of ~0. 

P r o o f  Theorem 6.1 shows that all of  the initial data constraints that 
come from the contact ideal can be satisfied whenever the transversality 
condition is satisfied. Accordingly, Theorem 3.2 shows that we have a 
characteristic solution whenever the remaining initial data constraints (6.16) 
are satisfied. �9 

R e m a r k .  Most problems have H ' s  that are either 0-forms (when the 
order of  the contact 1-forms is equal to the order of  the highest derivative) 
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or n-forms (when the order of  the contact 1-forms is one less than the order 
of  the highest derivative). If  the H ' s  are 0-forms, VJHa=-O and (6.16) 
reduce to the r conditions ~O*H a = 0 .  If  the H ' s  are n-forms, 6 * H  a-= 0 
because ~O has rank n - l ,  and hence (6.16) reduce to the r conditions 
6*( V] H ") = 0. The number  of  original equations and the number of  reduced 
field equations are thus the same. 

Systems of quasilinear first-order PDE with the same principal part, 

f i ( xJ ,  6~) - f ' ~ ( x  j, 6 ~ ) = 0  (6.17) 

are known to be solvable by the classical method of  characteristics (Duff, 
1956). Such systems can be characterized by the fundamental  ideal 

3~ = I { C  ~, dC ~, H ~, dH  '~ } 

on a contact manifold K with local coordinates {x i, q~, YTI 1 <- i <- n, 1 <- e~ <_ 
N} by simply taking H '~ = f i ( x  j, q ~ ) Y 7 - f ~ ( x  j, q~). Now, an isovector of 
5~ is generated by 

V~ = f ' ( x  j, q~)a~ + f ~ ( x  j, q~)G (6.18) 

For this isovector, V] C ~ = - H ~ and hence VJ ~r c 5~. The method of charac- 
teristics presented here can thus be applied to such systems, and we will 
obtain general solutions because VJ ~r c 5~ implies that the characteristic 
solutions do not satisfy any further constraints. Elementary calculations 
show that our results are in complete agreement with the classical results. 

In order to show the applicability of  the method to nonlinear systems 
of first-order PDE, I consider the problem of solving the system 

ox f  +O,g = 1, (o,f)Oxg = 4 (6.19) 

Note that differentiation of  (6.19) and elimination of the various cross 
derivatives gives 

(Oxg)2O,O,g = 40~oxg, (otf)Zoxoxf = 40,o,f  (6.20) 

Thus, (6.19) define a B~icklund transformation that relates the two nonlinear 
wave equations (6.20). Accordingly, if we solve the system (6.19), then we 
will also have solved the two nonlinear wave equations (6.20) simul- 
taneously. 

A convenient system of local coordinates on graph space is {x, t , f  g}, 
and we must have the contact 1-forms 

C f = d f - y  f dx - y f  dt, C g = dg -yg~ dx - y ~  dt (6.21) 

The system of PDE (6.19) can be encoded in terms of the 0-forms 

H ' = y f  + y ~ - l ,  H 2 = y f y ~ - 4  (6.22) 
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The fundamental ideal for this system is therefore 

= I { C  s, dCJl C ~, dC  ~, H ~, d H ' ,  H 2, d H  2} (6.23) 

A straightforward calculation shows that 5 ~ admits an isovector that is 
generated by 

Vc = axOx + tO, + ( a f  + bx)Of + (g - bt )ag (6.24) 

for any choices of the constants (a, b); that is, V=pr~(Vc)~  TI because 
N > 1. The forms of the components of Vc suggest that we consider initial 
data maps qJ of the form 

O: ~ K  I x = u ,  t = l ,  f = A ( u ) ,  g = B ( u )  
(6.25) 

y{= q~(u), y{= C(u), y~ = q,~(u), yf = C(u) 

because the transversality condition 0"(  VGJ tz) # 0 is then satisfied globally. 
An elementary calculation based on (6.25) and the definitions of the contact 
1-forms shows that qJ*C j = O*C g = 0 gives 

dA dB 
O{ = A ' ( u )  = d---~' 6~ = B ' (u )  - du (6.26) 

while 6"(  V] C j )  = 6"(  V] C g) = 0 yields 

r  O*, = B - a u B ' - b  (6.27) 

The remaining initial data constraints 6 * H  I = O * H  g = 0 give the reduced 
field equations 

A ' + B - a u B ' = l + b ,  { a ( A - u A ' ) + b u } B ' = 4  (6.28) 

Note that the reduced field equations (6.28) have nontrivial solutions. 
Indeed, 

A ( u ) = L u - K u l n ( u ) ,  B ( u ) = l + b + ( l + a ) K - L + K l n ( u )  (6.29) 

satisfy (6.28) for any choice of the integration constant L provided K is a 
root of the quadratic equation 

a K 2 +  bK - 4  = 0 

The orbital equations for the characteristics of this problem are 

d X  d T  d F  dG 
d'r aX,  d'r T, dr  a F + b X,  d'r - G - b T (6.30) 

When these are solved subject to the initial data (generated by 0) 

X(O) = u, T(O) = 1, F(O) = A ( u ) ,  G(O) = B(u )  (6.31) 
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for any A(u),  B(u) that satisfy (6.28), a characteristic solution of the original 
problem is given in implicit form by 

x = ue a~, t = e T (6.32) 

f = { a ( u ) + b u ~ ' } e  a~, g = { B ( u ) - b ~ ' } e  ~ (6.33) 

This characteristic solution is not a general solution because VJ ~r is not 
contained in the fundamental ideal. In particular, we know that any charac- 
teristic solution map �9 will necessarily satisfy the constraints 

~'*( vJ C ~) = 'I'*( VI C ~) = 0 

For the problem at hand, these differential constraints evaluate to 

(axO~ + t O , ) ( f )  = a f +  bx, (axa~ + tO,)(g) = g - bt  (6.34) 

namely, a quasilinear first-order system with the same principal part whose 
characteristics are precisely the characteristics of our given nonlinear system. 
In fact, one may take the view that our nonlinear system has characteristic 
solutions precisely because we have imposed the constraints (6.34) which 
have characteristic solutions; that is, our nonlinear system inherits its 
characteristics from the imposed constraints. 

Characteristic solutions to systems of second-order PDE can be con- 
structed once an appropriate isovector of the fundamental ideal is known. 
Since VJ 5~ will not be contained in 5 ~, in general, the characteristic solutions 
will satisfy a nontrivial system of differential constraints. Characteristic 
solutions will thus constitute only a subset of  solutions to the given system 
of PDE. 

7. HIGHER-ORDER EQUATIONS 

A nonlinear PDE of third order that is frequently studied is the 
(homogeneous) Korteweg-deVries  equation O , O + O ~ O + O O x O = O .  In 
order to show how to obtain characteristic solutions for higher-order sys- 
tems, I consider the problem of solving the i n h o m o g e n e o u s  KdV equation 

a,0 + a ~ 0  + 0  ox0 = F ( x ,  t, O) (7.1) 

where restrictions on the functional form of F ( x ,  t, d~) will be given shortly. 
The graph space for this problem is taken to have local coordinates {x, t, O}. 
In view of the various derivatives that occur in (7.1), we will need the 
contact 1-forms 

C = dO - y~ d x  - y, dr, Cx = dyx - Yxx d x  - Yxt d t  
(7.2) 

Cxx = dyx~ - y ~ x  d x  - yx~, d t  
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in which case the inhomogeneous KdV equation (7.1) is encoded through 
the 0-form 

H = y , + y x x x + 4 9 y x - F ( x ,  t, 49) (7.3) 

The fundamental ideal is therefore given by 

~r = I{C,  dC, Cx, dCx, Cxx, dCxx, H, dH} (7.4) 

Olver (1986) has shown that the homogeneous KdV equation admits 
an isovector field that is generated by the third-order prolongation of 

Vg = ( a + kt + mx)Ox + (1 + 3mt)O, + ( k - 2m49 )0r (7.5) 

where (a, k, m) are constants. It is a lengthy, but straightforward task to 
determine the possible forms of F(x ,  t, 49) = F(x ,  t, 6; a, k, m) for which Vg 
also generates an isovector of the inhomogeneous KdV equation. For 
example, with k = m = 0, we must have F(x ,  t, 49) = o~(x - at, 4)). We shall 
assume that this has been done and that the function F(x,  t, 49) that appears 
on the right-hand side of (7.1) and (7.3) has been chosen in accordance 
with this procedure. The isovector field generated by Vg is then an isovector 
of the fundamental ideal 5~ for the inhomogeneous KdV equation. 

Noting that the isovector field generated by Vg is a prolongation of a 
vector field on graph space, the essential information about an initial data 
map O is determined by the restriction of its range to graph space, 

~ I x = u ,  t = 0 ,  49=~(u)  (7.6) 

These serve as the initial data for the orbital equations of Vg on graph space: 

d X  
- -  = a + k T +  mX,  X ( O )  = u (7 .7 )  
dr 

d T  
- - =  l + 3 m T ,  T(0) =0  (7.8) 
dr  

d ~  
- k - 2 m r b ,  qb(0) = 4,(u) (7.9) 

d~" 

in which case the characteristic solution is given in implicit form by x = 
X ( u ,  r), t = T(u,  ~'), 49 =qb(u, r). The initial data for the various y's are to 
be determined by satisfaction of the initial data conditions. The only place 
where these will be used, however, is in the evaluation of the reduced field 
equation. We will therefore only have to determine O*Yx, tp*y,, and ~O*yxxx. 
This is an obvious saving of work, and is always present whenever the 
isovector field is a prolongation of a vector field on graph space. 
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Since Ix = dx ^ dt, ~b*( VgJ Ix) = - d u  and hence ( Vg, 4') satisfy the trans- 
versality condition for all u ~ R. The domain of the initial data map may 
thus be taken to be all of  ~. The initial data condition O*C = 0 gives the 
evaluation 

4'*Yx = 4"(u) (7.10) 

where the prime denotes differentiation with respect to u. Use of (7.6) and 
(7.10) then shows that the initial data condition 0"(  VgJ C ) =  0 gives 

O*Yf = k - 2 m O  - (a + mu)tl /  (7.11) 

It is then a simple matter to see that 0*(Cxx)= 0 gives 

4'*Yxx~ = 4 ' ' ( u )  (7.12) 

The reduced field equations are obtained from 4 '*H = 0, 4'*( V] H )  = 0. 
Since H is a 0-form, V] H = 0, and hence the reduced field equation is given 
by 4 '*H = 0; namely 

tp'" + (4' - a - m u ) 4 " -  2m4' + k = F(u,  O, 4') (7.13) 

The reader should note that this reduced field equation has been obtained 
without first having to integrate the orbital equations in order to compute 
a complete system of orbital invariant functions. 

Characteristic solutions of  the inhomogeneous KdV equation are given 
in implicit form by solving the orbital equations (7.7)-(7.9) for any initial 
data 4~(0) = 4'(u) that satisfy the reduced field equation (7.13). In the case 
k = m = 0, a > 0, we have F(x,  t, oh) = o f ( x -  at, 05) and (7.13) reduces to 

4 " +  (4' - a)4" = of(u, 4') (7.14) 

When of = 0, it is a simple matter to show that we obtain the "one-sol i ton" 
solution 

05=30 s e c h 2 ( - ~  - ( x - a t ) + 8 )  (7.15) 

because X = u+a% T =  ~-, ~ =  0(u)  in this case. On the other hand, even 
for of(u, 4 ' ) = f ( u ) ,  we can only obtain a first quadrature of  (7.14). We 
therefore have to solve the nonlinear second-order differential equation 

~"+�89 a0  + K = g(u),  g ' ( u ) = f ( u )  (7.16) 

in order to find characteristic solutions of  the inhomogeneous KdV equation 
when F(x,  t, 05) = g ' ( x - a t ) .  

8. COMPARISON WITH GROUP INVARIANT (SIMILARITY) 
METHODS 

Olver (1986, Chapter  3) gives a detailed treatment of  the method of 
constructing group invariant (similarity) solutions to systems of  PDE. An 
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elementary comparison of Olver's results with those presented here shows 
that the two methods agree whenever the isovector V (one-parameter 
symmetry group) of the fundamental ideal is a prolongation of  a vector 
field on graph space (remember that this is always the case when N > 1, 
but need not hold when N = 1). The methodologies of the two methods are 
quite different, however, and these differences can be crucial. 

First, if the isovector V is not a Cauchy characteristic vector field of 
the fundamental ideal (i.e., VJ~ is not contained in d) ,  the method of 
characteristics shows that any characteristic solution map �9 necessarily 
satisfies the differential constraints 

xIt*(V] C~) = 0, l<-c~<-N (8.1) 

while this is not manifestly evident in the group invariant method. The 
characteristic method thus provides an understanding of why we obtain 
general solutions for a single first-order PDE and for quasilinear systems 
with the same principal part (when VJ 5~ c 5~), and why we do not obtain 
general solutions for systems of nonlinear first-order and higher-order PDE. 
I note in passing that the group invariant method discussed by Olver cannot 
be used for a single nonlinear PDE in a single unknown because the isovector 
field for such a problem is not a prolongation of a vector field on graph space. 

Second, the computational procedures of the two methods differ 
markedly. Olver (1986, p. 192) gives a seven-step procedure for constructing 
group invariant solutions. The fourth step of  this procedure requires the 
explicit construction of  a complete set of functionally independent invariants 
of the group. For the case of a one-parameter group generated by an 
isovector V, this means that the orbital equations of V must be solved 
explicitly. Now, it is the exception rather than the rule that a system of 
orbital equations can be solved explicitly, and hence it is the exception 
rather than the rule that a complete set of functionally independent 
invariants can be constructed explicitly. If such a system of independent 
invariants cannot be constructed, then the method given by Olver comes 
to a screeching halt; that is, one is unable to solve the unknown invariants 
for a system of primary and parametric independent variables and the 
calculation of the reduced system of PDE cannot be performed. 

Knowledge of the isovector V and the fundamental ideal and an initial 
data map ~p that satisfy the transversality condition allows us to compute 
all of  the initial data constraints 

~,*C ~ =0,  O*(VJC~)=O, 0"C7=0,... (8.2) 

and the reduced field equations 

O*H~ =0,  q,*(V] H~) =0  (8.3) 

The method of characteristics thus separates the problem of  solving the 
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orbital equations from the problem of computing the reduced field 
equations, while the group invariant method does not. We obtain explicit 
evaluations of the reduced field equations without having to solve the orbital 
equations and without having to decide on a system of parametric indepen- 
dent variables and then eliminate them from the field equations. 

Both methods ultimately require us to solve the orbital equations of 
the isovector V in order to obtain explicit solutions. There is a further 
difference, however, for we could resort to numerical integration of the 
orbital equations of V in the method presented here because we can obtain 
the reduced field equations before such integrations are performed. Numeri- 
cal integration of the orbital equations in the group invariant method is not 
practical expressly because such numerical techniques are incapable of 
obtaining a complete system of (precise) invariants of the flow of V. The 
method of characteristics is thus capable of using approximate numerical 
methods where necessary. 

The characteriwtic method allows us to "watch" the unfolding of the 
characteristic solution from its initial data, while the group invariant method 
does not provide this capability directly. There is, of  course, a price to be 
payed for this capability. It takes the form of the requirement that we choose 
an initial data map that satisfies the transversality condition. The group 
invariant method likewise contains an implicit transversality condition. It 
is contained in the requirement that we are able to solve the complete system 
of  invariants for primary and parametric independent variables, and that 
the parametric independent variables can be eliminated in the reduced field 
equations. 

Both the characteristic method and the group invariant method lead 
to systems of reduced field equations that must be solved explicitly in order 
to obtain solutions to the original problem. If n >2 ,  the reduced field 
equations that result from an isovector V will be partial differential equations 
with one less independent variable. The space of new independent variables 
in the group invariant method is not specifically tied down by that method, 
while we have the explicit domain D,_~ of the initial data map ~O for the 
new space of independent variables in the characteristic method. Since the 
reduced field equations are actually field equations that are pulled back to 
Dn-i by the action of ~b*, we obtain a well-defined new problem on the 
domain Dn_~. We can then apply the method of characteristics to this new 
problem by finding an isovector of the fundamental ideal for this new 
problem. Successive reductions are thus directly available with the method 
of characteristics without having to solve the orbital equations at each stage. 
The group invariant method also provides for successive reductions, but 
they are of an implicit nature and require explicit determination of a 
complete system of independent invariants at each stage. 
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Finally, note that the method of characteristics is a "dimension reduc- 
tion" method, while the Cartan- K/ihler (Cartan, 1984) method for involutive 
systems is a "dimension induction" method. The two methods, when appli- 
cable, should thus be complementary. 
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